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Abstract. We present COMO, a real-time monocular mapping and
odometry system that encodes dense geometry via a compact set of 3D
anchor points. Decoding anchor point projections into dense geometry
via per-keyframe depth covariance functions guarantees that depth maps
are joined together at visible anchor points. The representation enables
joint optimization of camera poses and dense geometry, intrinsic 3D con-
sistency, and efficient second-order inference. To maintain a compact yet
expressive map, we introduce a frontend that leverages the covariance
function for tracking and initializing potentially visually indistinct 3D
points across frames. Altogether, we introduce a real-time system capa-
ble of estimating accurate poses and consistent geometry.
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1 Introduction

Achieving accurate and consistent poses and dense geometry from monocular
images in real-time is a challenging yet essential undertaking to push forward
state-of-the-art in robotics and augmented reality. Monocular cameras are the
key to achieving low-cost, energy-efficient, and compact intelligent platforms.
While images contain rich visual information, reconstructing the world is chal-
lenging due to the lack of direct geometric observations.

The ideal representation for real-time monocular visual odometry (VO) and
simultaneous localization and mapping (SLAM) remains elusive. While sparse
methods jointly optimize camera poses and a set of conditionally independent
3D points given poses, the map lacks consistent dense geometry for downstream
tasks and pose estimation cannot benefit from all visual information. Dense
SLAM uses and reconstruct all pixels, but the sheer number of variables relative
to measurements renders joint optimization infeasible and inference ill-posed.
Recently, learned priors over compact depth map representations, such as codes
and sparse 2D depths, have enabled joint optimization. However, representations
with 2D depth priors have thus far lagged in accuracy, as consistency between
depth maps in 3D is not guaranteed. Volumetric representations, such as voxel
grids and neural fields, directly enforce dense 3D consistency by construction,
but cannot perform real-time joint optimization due to expensive rendering.
Furthermore, compact, efficient, and expressive 3D priors for general scenes are
not yet suitable. Achieving accurate and consistent 3D geometry in real-time
would represent a significant advance for monocular SLAM.
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(a) Point cloud reconstruction from the sliding-
window monocular odometry defined by 240
points and 8 keyframes.

(b) Dense point cloud from 40 keyframes across
a large office during live operation of a monocu-
lar camera.

Fig. 1: COMO encodes scene geometry via a compact set of 3D points and decodes
points into dense geometry via per-keyframe depth covariance functions. The 3D points
visualized in red anchor depth maps together from multiple views while the covariance
function generates dense geometry by conditioning on sparse point projections.

In this work, we propose a representation that achieves the three desired prop-
erties: joint optimization of poses and dense geometry, intrinsic 3D consistency,
and low-latency, real-time operation. We encode the scene as a compact set of
3D points, which are shared across frames. To decode into dense geometry, 3D
points are first projected into keyframes. We then use image-conditioned depth
covariance functions [9] per keyframe to condition on sparse depths and generate
dense depth maps that intersect each corresponding 3D point. Depth maps are
backprojected into 3D for calculating any-pixel photometric error. All steps are
efficient and have analytic Jacobians for second-order optimization. Updates to
dense geometry are propagated into our encoded scene representation and ensure
suitable regularization for the ill-posed problem of dense reconstruction.

Maintaining a compact map in an incremental VO setting requires a com-
patible frontend. Keeping a small number of points benefits efficiency, while the
distribution of points affects expressiveness. Feature-based systems focus on visu-
ally distinct features, but this often leads to many points on edges which are not
suitable for modeling dense geometry. Therefore, we leverage depth covariance
for determining anchor point visibility in new keyframes, actively initializing new
3D points, and encoding the current dense geometry into new 3D points.

Our system demonstrates improved robustness over methods lacking joint
pose and dense geometry optimization, and significantly more accurate pose
and geometry estimation compared to compact 2D representations. Altogether,
we propose a real-time VO system that achieves robust and accurate odometry
along with consistent dense geometry, with example reconstructions in Fig. 1.

In summary, the contributions of our work are:

– An efficient representation of dense geometry encoded by a compact set of
3D points and decoded by depth covariance functions.

– A frontend for our compact map that leverages depth covariance for visibility,
active initialization, and encoding dense geometry.

– A real-time monocular visual odometry and mapping system that produces
accurate and consistent poses and dense geometry.



COMO 3

2 Related Work

Sparse vs. Dense Visual SLAM Sparse SLAM systems optimize 3D points
that are conditionally independent given poses. Exploiting the sparsity inher-
ent in the information form of structure-from-motion is the key to real-time
algorithms with a significant number of points [16]. Modern sparse VO meth-
ods [10,12,22] and large-scale bundle adjustment [29] rely on the Schur comple-
ment which greatly reduces optimization complexity. Sparse systems lack dense
reconstruction, which is useful for many downstream tasks. Thus, it is common
to first perform pose estimation followed by dense mapping given poses and
potentially sparse landmark estimates [18, 21, 23, 26]. MVS approaches estimate
depth maps via a reference cost volume and multiple supporting frames, and
have shown progress when integrated into a learning pipeline [17]. However, the
sparse followed by dense paradigm has two major issues. Dense information is
ignored for pose estimation, which can result in failure in many real-world scenar-
ios, while the mapping step is heavily reliant on accurate pose estimation. Joint
optimization of poses and dense geometry avoids the brittle two-step process
and has the potential to achieve more accurate odometry and mapping [27].

Dense methods [11, 25] brought the promise of estimating poses and com-
plete geometry simultaneously. However, joint optimization proved difficult due
to the ill-posed nature of reconstructing all points. Hand-crafted geometry pri-
ors regularize the problem, but disrupt the sparsity and thus the tractability
of joint optimization as discussed in [10]. In practice, these methods resort to
alternating pose and geometry estimation or move away from second-order op-
timization. More recently, DROID-SLAM [35] reconstructs depths for all pixels,
but similar to sparse systems, does so with no geometric correlation. This results
in highly parallelized bundle adjustment, but results in many noisy points and
no guarantee of consistent depths within a frame and across frames, as shown
in Fig. 2a. All real-time state-of-the-art SLAM systems [6, 10, 35, 36] still rely
on the Schur complement, and dense methods with geometric correlation have
traditionally not demonstrated comparable pose accuracy, which also limits ge-
ometry estimation.
Learned Depth Priors for Compact Optimization To achieve consistent
poses and geometry, monocular depth priors in SLAM focus on test-time opti-
mization to avoid irreparable errors from single-view depth prediction. Therefore,
depth priors in monocular SLAM often predict a subspace of potential depths
given an image via a compact latent code [3,7,18], or a depth map basis [13,34].
Even with this flexibility, depth maps are not guaranteed to be consistent across
multiple views since latent variables live only in frames as shown in Fig. 2b.
While per-pixel depth and keypoint reprojection losses may encourage 3D con-
sistency [7], this may introduce bias and does not scale computationally since
it requires per-pixel pairwise frame comparisons. Most importantly, it lacks in-
trinsic 3D consistency, and depth maps often produce a layering effect in 3D
as in Fig. 2b. Predicting a view-based mesh topology permits optimizing depth
vertices [4], but it is unclear how to move to a 3D topology.
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(a) Dense bundle adjustment
with 3D landmarks [35]

(b) Per-frame dense depth
priors via compact codes [7]

Blue: 1,2,3
Green: 2,3,4,5
Red: 2,3,4

(c) Ours: 3D points and depth
covariance functions

Fig. 2: Reconstructions on Replica and geometry properties of different dense map rep-
resentations. The dotted line represents the true surface. (a) Densely reconstructing a
large number of conditionally independent 3D points given poses enables accurate pose
estimation and many accurate points, but there is no guarantee of coherent geometry.
(b) Depth priors produce smooth depth maps, but even with inter-frame consistency
losses, can produce inconsistent geometry and bias preventing global consistency. (c) A
compact set of 3D points and depth covariance functions anchor depth maps together,
leading to consistent pose estimation and dense geometry.

In this work, we leverage the recently proposed learned depth covariance
function [9]. While [9] introduces an odometry formulation, it only optimizes
per-frame 2D inducing depths, which has the same limitations as per-frame
codes, and lacks intrinsic 3D consistency. A key insight is that depth covariance
permits sharing latent 3D points across frames, so that our representation lives
in 3D rather than separate 2D image planes. While codes and bases are a fixed
subspace that cannot guarantee a depth map passes through any set of 3D points,
our covariance formulation guarantees that depth maps go through any desired
3D points as shown in Fig. 2c. Therefore, we can anchor depth maps together by
construction for dense 3D consistency. We also exploit the covariance function for
our frontend in tracking and initializing potentially non-visually distinct points.
Keyframe-based vs. Volumetric Maps Keyframe-based maps host dense
depths in camera frames, which maintain flexible level-of-detail rooted in the
camera resolution and focus only on surfaces. However, representing space using
per-pixel depths cannot guarantee that inter-frame correspondences refer to the
same 3D point. While pairwise depth constraints can mitigate inconsistency
[7], these exhaustive per-pixel errors are expensive to compute, lack intrinsic
consistency, and may introduce bias when balancing with other losses. Methods
that project hosted depths into neighboring frames and predict flow updates [35]
are asymmetric with no guarantee of cycle consistency.

Volumetric maps live in 3D space and unknown quantities are shared across
frames. 3D consistency is achieved by construction but it is challenging to balance
fidelity and efficiency. Voxel grids using backward sensor models [15,24] assume
known poses and independence between cells, and thus are unsuitable for efficient
and consistent optimization. While forward models in voxel grids [37] and neural
fields [19, 33] permit more consistent geometry with pose optimization in-the-
loop, expensive rendering, a large number of correlated variables per ray, and
alternating or first-order optimization limit its use in low-latency monocular VO
and SLAM. In addition, volumetric methods are often subject to a resolution
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trade-off. Higher resolution permits greater detail, but requires more memory,
greater runtime complexity, and increasing levels of noise.

Our 3D representation achieves the benefits of both frame-based and volu-
metric maps for odometry and mapping: the per-pixel resolution and efficiency
of depth maps with the intrinsic 3D consistency of volumetric representations.
The efficient compact-to-dense model permits joint optimization of poses and
geometry via any-pixel constraints in real-time.

3 Compact Mapping Backend

The mapping backend maintains a compact set of 3D world points along with
keyframes hosting per-pixel covariance function parameters. A dense world-
centric point cloud is decoded from compact points and poses, which is refined
by second-order minimization of photometric error. VO operates in a sliding-
window fashion with a fixed number of keyframes. Fig. 3 provides an overview.

Quantities in the world frame and camera frame, such as points, are denoted
by subscripts PW and PC, respectively. Compact points are indexed by super-
scripts m, while dense points are indexed n, such as pixels pm and pn. Stacked
vector forms of sparse and dense variables use capital M and N, as in log-depth
vectors dM and dN. The notation ||r||2Σ denotes Mahalanobis distance of residual
vector r with measurement covariance matrix Σ.

3.1 Preliminaries: Depth Covariance Function

First, we introduce the depth covariance function from [9]. This covariance func-
tion models the distribution over all possible log-depth functions for any finite
set of pixels via a Gaussian process (GP) [28]. First, a CNN takes in an RGB
image and outputs a per-pixel feature map ϕ. Compared to [9], we use a zero-
mean GP prior for simplicity, such that the distribution is defined only by the
covariance function k that takes in two pixels and respective CNN features:

d(p) ∼ GP (0, k ([p;ϕ(p)], [p′;ϕ(p′)])) . (1)

We found that the mean log-depth variable proposed in [9] is unnecessary, as the
largest eigenvector of the covariance function corresponds to scale of the entire
depth map. More information on the exact covariance function k is detailed in [9],
but the key idea is that larger covariance is an indicator of similarity in log-depth.
Since the covariance function takes in both pixel locations and CNN features, it
is nonstationary which permits varying levels of smoothness and discontinuities
conditioned on the image content. The zero-mean prior defines a planar depth
prior in the absence of observations. To define a covariance matrix K for a set
of pixels, the (ith, jth) entry of K is filled in by k

(
[pi;ϕ(pi)], [pj ;ϕ(pj)]

)
.

3.2 Compact-to-Dense Geometry

Given anchor point to keyframe correspondences, we generate a dense depth
map given anchor points Pm

W, the pose of keyframe r with rotation RWCr
and
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Project sparse

(a) Anchor point
projection

Form depth maps and backproject into 3D

(b) Dense geometry
construction

Optimize dense photometric error

(c) Photometric error
calculation

Updated map is more consistent

(d) Pose and
geometry update

Fig. 3: Overview of compact mapping framework. (a) Anchor points are projected
to corresponding keyframes. (b) Keyframes decode into dense depth and backproject
geometry to 3D. (c) Target frames enforce dense photo-consistency. (d) Optimizing
dense alignment error leads to updated poses and geometry with greater 3D consistency.

translation tWCr
, and the keyframe image. Compact points are transformed and

projected to pixel coordinates p via camera projection π:

Pm
Cr

= RT
WCr

(Pm
W − tWCr

), pm = π(Pm
Cr

), (2)

which is also illustrated in Fig. 3a. At this point, we create a dense log-depth map
from log-depth observations dm ≜ log

(
[Pm

Cr
]z
)

and projected pixel coordinates
pm. Given an image, the covariances between pixels can be queried as in Section
3.1. The per-frame covariance matrix between all visible anchor point pixels is
defined as KMM, and the covariance between all image pixels and anchor point
pixels as KNM. We also stack all training dm and test dn log-depths into dM and
dN, respectively. The GP formulation allows efficient dense log-depth prediction
via the linear Gaussian conditioning equation:

dN = KNM (KMM)
−1

dM. (3)

The GP guarantees that each dense log-depth map goes through the anchor
points, creating a consistent surface across multiple views. Next, we backproject
points for each pixel and transform to world coordinates:

Pn
W = RWCrπ

−1(pn, ed
n

) + tWCr , (4)

where n indexes a query pixel. Note that each keyframe generates a dense depth
map via its observed anchor points and covariance parameter feature maps as
in Fig. 3b. This compact-to-dense formulation only requires transformations,
camera projection, and linear GP conditioning. Therefore, we can efficiently
calculate analytical Jacobians for dense per-pixel constraints with respect to
poses and anchor points. We show the chain rule for these steps in Section A.1.

In practice, we ignore the Jacobians with respect to pixel coordinates when
constructing KMM and KNM and calculate the covariance matrices once at ini-
tialization. In addition to being more efficient, this ensures that depth maps do
not undergo unstable changes if a point moves across a depth discontinuity. If
an anchor point correspondence moves behind a camera during optimization, we
reinitialize it to the median depth of the keyframe.
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3.3 Photometric Residuals

While only keyframes are used to create dense geometry, additional small base-
line support frames are included to improve convergence. We define a set of edges
E for photometric error that consists of temporally adjacent keyframe-keyframe
pairs, and support frames to the two nearest keyframes in time. Given a target
image It, which may be either a keyframe or support frame, with pose TWCt

,
we first transform world points from keyframe view r and project:

pn
t = π(RT

WCt
(Pn

W − tWCt
)). (5)

Given these projective correspondences and accounting for exposure and global
illumination changes via affine brightness parameters, a and b, similar to [10],
we calculate the photometric error across pixels and frame edges:

E =
∑
r,t∈E

∑
n

||rnr,t||2σ2
rI
, rnr,t = It(p

n
t ) + bt −

(
e−ar

e−at
Ir(p

n
r ) + br

)
, (6)

which is illustrated in Fig. 3c. These constraints depend on each frame’s pose and
affine parameters, and the anchor points viewed by the reference keyframe. For
robustness, we perform iteratively reweighted least squares (IRLS) with a Huber
cost function and set the photometric standard deviation σr to be proportional
to the median absolute residual [1] to handle diverse scenes with different error
scales. Compared to RGB residuals, we found that grayscale images were more
efficient and similarly robust. The Jacobian chain rule for photometric residuals
is in Section A.2.

3.4 Additional Constraints

While photometric error is the only data term, we introduce additional priors
to remove ambiguities. Priors on the oldest keyframe’s pose and affine bright-
ness parameters remove gauge freedom in the sliding-window. After removing a
keyframe from the window, we include priors on its still-observed landmarks to
ensure global consistency as a simpler alternative to first-estimate Jacobians [10].

Since keyframes may have regions unobserved by other frames, which causes
anchor points to lack photometric constraints, we include two geometry priors.
The first is a weak prior on anchor points to match the log median depth s of
the keyframe it was first observed in. The second is a GP prior ||dM − s||2KMM

on every keyframe to regularize anchor points that have large correlation, which
gives improved estimates for underconstrained anchor points lying on surfaces
with well-constrained ones, such as on textureless walls.

During optimization, there is ambiguity in whether an anchor point changes
depth or moves laterally along a surface, such as when viewing a plane at an
angle. Thus, we include a pixel prior encouraging the projection of the point
in its initializing keyframe not to change from its first observation, which de-
fines a ray-surface intersection. As mentioned previously, this is more efficient
than calculating Jacobians through Sec. 3.2 and more stable since GP inducing
point optimization has little benefit when points start in suitable locations [5]
as ensured by our frontend in Section 4.
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(a) Anchor points
visible in KF #1

(b) KF #1 depths
projected to KF #2

(c) Anchor point
matches in KF #2

(d) Newly initialized
points in KF #2

Fig. 4: Overview of visibility checks between two keyframes (KF). Matches are shown in
blue, rejected matches in red, and newly initialized points in green. Note that occluded
edges are rejected, while non-visually distinct points are often matched. New points are
allocated to geometrically complex regions while the table is already well-represented.

3.5 Second-Order Optimization

We calculate analytical Jacobians for all constraints in the optimization. The
compactness of our linear system permits real-time joint optimization of poses
and correlated geometry that is infeasible for traditional dense VO. Stacking all
Jacobians into J, weights from IRLS and noise models into the diagonal matrix
W, and residuals into r, we solve for parameter updates ∆x shown in Fig. 3d
via dense Cholesky factorization of the Gauss-Newton normal equations:

(JTWJ)∆x = −JTWr. (7)

Pose updates are minimally parameterized as Lie-algebra elements se(3) as is
standard in SLAM [30]. We found that the most time consuming step of backend
optimization is accumulating geometry blocks into the Hessian (JTWJ). This
can be sped up by factoring out constant components of the Jacobians and
reducing the dimensionality of the accumulation as detailed in Section A.4.

4 Visual Frontend

The visual frontend tracks the current frame with respect to the map, selects
keyframes and support frames for the backend, determines 3D anchor point
visibility in new keyframes, and initializes new 3D anchor points. Compared to
feature-based systems, the ideal points for an expressive yet compact map may
be visually indistinct, so we utilize depth covariance for robust correspondence.

4.1 Dense Photometric Tracking

Given the current estimate of the newest keyframe’s depth, we optimize the pose
and affine brightness parameters using grayscale image alignment in the IRLS
framework [2]. For efficiency, we perform inverse compositional tracking and use
a multi-scale image pyramid. After tracking, a new keyframe is added to the
backend if there is either significant translation relative to the median scene
depth or if the number of unique projected pixels in the tracked frame falls
below a threshold to handle rotation and occlusion. Support frames are added
via modified thresholds according to the desired frequency between keyframes.
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4.2 Anchor Point Visibility

When a new keyframe is added, we perform explicit correspondence to 3D an-
chor points viewed in the last keyframe to achieve 3D consistency. Note that
correspondence here means whether a point is visible to a frame, as there is no
explicit constraint on its location in the image. Compared to feature-based meth-
ods [22], anchor points often lack visual distinctiveness, so matching via image
information is problematic. Instead, we leverage the interpretability of the depth
covariance function to determine visibility. In general, a correspondence should
be compatible with all depth covariance functions that use it to generate dense
geometry.

First, the 3D anchor points and dense depth map from the last keyframe,
shown in Fig. 4a, are projected into the current frame, shown in Fig. 4b. Given
the projected sparse and dense pixel coordinates, we may query covariance pa-
rameters ϕ(p) and construct KMM and KMN for the new keyframe. We leverage
the linearity of the GP to compress dense log-depth observations into the sparse
projected anchor point coordinates. Assuming conditional independence of log-
depth observations dn given the sparse log-depths dm, we can solve an efficient
least-squares problem:

min
dM

||KNM (KMM)
−1

dM − dN||2σ2
d
+ ||dM||2KMM

, (8)

where the first conditional term ensures that dM fits the projected dense ob-
servations with standard deviation σd, while the second prior term regularizes
sparse log-depths according to the GP training covariance KMM. We perform
a consistency check on the log-depth difference between the current 3D anchor
points and those solved in Eq. 8, and prune points at depth discontinuities. This
yields potential matches the are consistent between the two keyframes.

In practice, we set a maximum number of visible anchor points per-frame to
allow efficient batched mapping operations on the GPU. If all points are matched,
it could prevent new ones from being initialized and parts of the scene would
lack capacity to adequately represent geometry. Thus, we perform pruning of
matches so that we have a suitable distribution of points before initializing new
anchors. Similar to the GP conditional mean from Eq. 3, we may also obtain
conditional variances of all pixels with respect to the first j pixels via:

σ2
j = diag [KNN]−KNM1:j

(
KM1:jM1:j

)−1
KM1:jN. (9)

We perform active sampling via conditional variance reduction (CVR) [14, 20],
where at the (j+1)th iteration, the pixel in domain P with the largest variance is
selected pj+1 = argmaxp∈P σ2

j (p). We actively sample from the set of potential
matches until a variance threshold is reached, which gives the final set of anchor
point correspondences for the current keyframe. Compared to [9], we found that a
minimum distance threshold between pixel locations and from the image border
is required to avoid accumulating pixels near the same discontinuity. This is
essential for improving depth estimates and maintaining a good set of candidate
points for correspondence, as otherwise many points near edges may be occluded
at the same time. We show the set of matches between two keyframes in Fig. 4c.
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Fig. 5: Visualization of sliding-window odometry on TUM fr2/desk. Top images show
tracked and newly initialized anchor point correspondence in blue and red, respectively.
Depth maps are below, while the dense point cloud with 248 anchor points is shown
on the right. Note the correspondence tracks on textureless surfaces, such as the table
and plate, as well as the long-term correspondence on the cube, mug, and book.

4.3 Anchor Point Initialization

As the camera explores unobserved parts of the scene, new anchor points must
be initialized. First, we again perform active sampling, but now across all pixels
given the current anchor point locations from the previous section. This ensures
new points will be initialized for parts of the scene that are unobserved, lack
matches, or require additional geometric capacity, as shown in Fig. 4d.

Once the pixel locations of new anchor points are known, we initialize the
log-depth and backproject into 3D. Defining the set of known log-depths from
the anchor points dm1

, the unknown log-depths of newly initialized points dm2
,

and all log-depths as dM = (dT
m1

,dT
m2

)T , we solve another least-squares problem:

min
dm2

||KNM (KMM)
−1

dM − dN||2σ2
d
+ ||dm2

− s||σ2
s
, (10)

where the first term promotes fitting reprojected dense depth observations given
matched anchor log-depths and the new log-depth initializations, while the sec-
ond term is a prior that new log-depths are close to the log median depth s of
the previous keyframe. We found that using an isotropic prior with standard
deviation σd, rather than KMM, avoids bias for parts of the image that were not
previously observed and would otherwise be underconstrained. We define σd as
the standard deviation of the residuals from Eq. 8 to better calibrate the model.
Given the new pixel locations, log-depth initializations, and the new keyframe’s
pose estimate, 3D points are initialized for the backend. A qualitative example
of tracked anchor points, depth maps, and reconstruction is shown in Fig. 5.

5 Experiments

We evaluate both the pose and geometry estimation of our method on multiple
datasets. For sparse methods, we compare against feature-based ORB-SLAM3
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office0 office1 office2 office3 office4 room0 room1 room2 mean

S ORB-SLAM3 [6] 0.4 0.3 8.5 0.4 4.5 0.3 0.3 0.4 1.9
DSO [10] 0.3 0.5 0.3 0.2 5.3 0.2 0.8 0.2 1.0

D

DeepFactors [7] 42.9 38.6 45.6 41.4 50.1 32.4 26.1 44.1 40.2
DROID-VO [35] 5.3 4.1 6.5 11.2 7.1 9.0 4.8 7.0 6.9
COMO-NC 2.9 5.0 7.4 6.1 8.1 4.4 4.5 3.7 5.3
COMO 2.4 2.4 4.3 3.6 5.5 2.5 2.7 3.4 3.4

Table 1: Mean ATE (cm) over 5 runs for monocular VO on the Replica dataset. S
and D in the first column refer to sparse and dense methods, respectively.

[6], direct DSO [10], and learning-based DPVO [36] in trajectory estimation. We
also compare against a representative set of dense methods for trajectory and
depth estimation. TANDEM [17] uses DSO for odometry, a learned MVS network
for local mapping, and a globally fused TSDF for tracking. DeepFactors [7]
is a full code-based SLAM system with photometric, geometric, and keypoint
losses to ensure consistency across depth maps. DROID-VO [35] uses learned
correspondence and flow updates in a traditional bundle adjustment framework,
such that all depths are reconstructed but lack geometric correlation. DepthCov
[9] optimizes sparse 2D depths under the depth covariance framework, and in a
related manner, COMO-NC (no correspondence) is our full framework but no
3D points are tracked across frames. We disable loop closure for DeepFactors
and DROID-SLAM to isolate the odometry and mapping performance.

5.1 Implementation Details

We use a fixed configuration across all three datasets to demonstrate the robust-
ness of the system. We use the off-the-shelf depth covariance function [9] that
was trained on the ScanNet training set. Our sliding window odometry uses
9 keyframes and 3 support frames between keyframes for a total of 24. Each
keyframe views a maximum of 64 anchor points and initializes new points if
it fails to track all from the previous keyframe. We use 256x192 images for all
operations, and the mapping backend samples pixels with the highest gradient
magnitude in 4x4 images patches for photometric error.

5.2 Trajectory Evaluation

Replica We first test our monocular odometry on the Replica [31] sequences
recorded in [33], which provides a photorealistic environment with ground-truth
geometry. As shown in Table 1, sparse methods without priors perform best, as
conditions are favorable for SLAM: few image artifacts, no exposure changes,
and sufficient baselines for multi-view geometry. Among methods with learned
priors, COMO achieves the lowest ATE. The representation has little bias as
compared to the code-based DeepFactors, which drifts despite photometric, ge-
ometric, and keypoint constraints. Sharing 3D points between frames in COMO
shows significant improvement over COMO-NC which disables correspondence.
TUM The TUM RGBD dataset [32] is a challenging dataset for monocular
VO due to significant motion blur, exposure changes, rolling shutter artifacts,
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fr1 fr2 fr3
360 desk desk2 plant room rpy teddy xyz xyz desk long mean

S
ORB-SLAM3 [6] X 2.0 X 11.8 X 5.6 X 1.0 0.5 1.3 1.7 X
DSO [10] X 27.2 66.0 6.0 58.6 X X 3.8 0.3 2.2 9.9 X
DPVO [36] 13.1 9.4 6.5 3.0 39.8 3.5 6.2 1.3 0.5 3.5 5.5 8.4

D

TANDEM [17] X 4.3 33.7 X X 4.9 43.1 2.4 0.3 2.0 8.3 X
DeepFactors [7] 17.9 15.9 20.2 31.9 38.3 3.8 56.0 5.9 8.4 26.3 49.0 24.9
DepthCov [9] 12.8 5.6 4.8 26.1 25.7 5.2 47.5 5.6 1.2 15.9 68.8 19.9
DROID-VO [35] 15.7 5.2 11.1 6.0 33.4 3.2 19.1 5.6 10.7 7.9 7.3 11.4
COMO-NC 16.1 4.2 10.9 19.3 28.6 5.2 68.7 4.1 0.7 8.8 46.8 19.4
COMO 12.9 4.9 9.5 13.8 27.0 4.8 24.5 4.0 0.7 6.3 10.5 10.8

Table 2: Mean ATE (cm) over 5 runs for monocular VO on the TUM dataset. S and
D in the first column refer to sparse and dense methods, respectively.

and heavy rotations. Results comparing our method against state-of-the-art VO
methods on 11 sequences is shown in Table 2. For sparse methods, ORB-SLAM3
and DSO both lose tracking on multiple sequences, while DPVO, which uses
learned context for tracking 64 sparse patches and performing bundle adjust-
ment, performs best among all methods. In this work, we are focused on also
reconstructing dense geometry, but it would be interesting to combine the learned
features of DPVO with our 3D representation. For dense methods, TANDEM
fails due to relying on DSO for odometry, which can still fail despite relying on
the TSDF with MVS fusion for tracking. This demonstrates the need for joint op-
timization of poses and dense image information. Despite promoting consistency
between neighboring depth maps, DeepFactors has relatively large error. Both
DepthCov and COMO-NC are similar in terms of optimizing sparse depths in
each frame, while leveraging a true 3D representation in COMO reduces error by
almost 50%. COMO outperforms DROID-VO, which also uses learned features
for matching and reconstructs all pixels from downsized images via sparse bundle
adjustment. As the assumptions of brightness constancy are violated in many
real-world datasets, learned features could further the accuracy of COMO, but
it is interesting that our compact representation and simple photometric error
can produce the lowest ATE of dense methods.

ScanNet Test Lastly, we evaluate the trajectory error on 18 diverse medium-
length scenes from the ScanNet [8] test set. Sequences include homes, offices,
schools, businesses, and outdoors. Methods that fail are assigned a maximum
100 cm error for averages. Sequences have challenging rotational motion, high
image noise, and specular surfaces. We summarize the results in Fig. 6, which
shows the number of sequences below varying ATE thresholds, while Table 3
contains summary statistics. COMO has the lowest mean ATE and area-under-
the-curve (AUC). While DPVO has a higher number of trajectories under low
ATE thresholds, it also shows high variance results on some sequences. Despite
using photometric error that is often violated due to image noise and specular
surfaces, our representation with 3D consistency proves valuable in challenging
real-world data. An example reconstruction is shown in Fig. 1a.
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Fig. 6: Number of successful trajectories below ATE
threshold for selected ScanNet test sequences.

Method ATE AUC
ORB-SLAM3 79.9 1.63
DSO 54.7 2.46
DPVO 15.1 6.34
TANDEM 41.7 3.79
DeepFactors 36.1 2.97
DROID-VO 13.9 6.51
COMO-NC 15.8 6.16
COMO 13.0 6.67

Table 3: ScanNet Mean
ATE (cm) and AUC.

Method Replica ScanNet
TANDEM N/A 0.325
DeepFactors 0.263 0.232
DROID-VO 1.129 1.389
COMO-NC 0.069 0.155
COMO 0.046 0.128

Table 4: Depth
absolute relative error.
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Fig. 7: ScanNet depth accuracy and consistency metrics for
fraction of pixels falling below threshold δ.

5.3 Geometry Evaluation

Since we are interested in both consistent pose estimation and dense geometry,
we evaluate dense depth predictions on Replica and ScanNet. To evaluate accu-
racy, we perform the same global scale alignment that is used to produce ATE
for monocular methods and transform estimated poses and depth maps to be
aligned to the metric ground-truth. Beyond global accuracy, we also measure con-
sistency, which checks whether neighboring frames viewing the same 3D points
have consistent depth estimates. Note that consistency does not care about the
correctness of depth. To check valid pixels, we backproject ground-truth depth
maps and project these points into neighboring frames, and check if the depths
agree within 1cm. Then, for all valid 3D correspondences, we calculate metrics
between pairs of estimated depth images. If N is the number of keyframes for
that sequence, then N depth images are used for accuracy metrics, while 2(N−1)
depth images are used for consistency since pairs require both directions.

For estimated depth D̂ and ground-truth depth D we show the mean abso-
lute relative error (1/N)

∑
i |D̂i − Di|/Di across all sequences for Replica and

ScanNet in Table 4. We do not evaluate TANDEM on Replica since it is used
in the training data. COMO outperforms other methods due to its ability to
jointly optimize dense, correlated geometry along with poses. Despite accurate
pose estimation, DROID-VO has outliers with significant depth errors. To fur-
ther evaluate the distribution of depth accuracy and remove the effect of large
outliers, in Fig. 7, we use the δ threshold commonly used in depth estimation,
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Fig. 8: Mesh and surface normals from TSDF fusion of a live desk sequence.

which measures what fraction of pixels satisfy max
(
D̂/D,D/D̂

)
< δ. Interest-

ingly, accurate depth maps does not necessarily imply consistency. For example,
DROID-VO has the second best accuracy behind COMO, while DeepFactors
has the most consistent geometry other than COMO. DeepFactors uses explicit
geometric and keypoint constraints in the optimization to ensure depth maps are
close to each other. However, our compact mapping framework achieves both the
best accuracy and consistency without explicit constraints.

5.4 Real-time System and Runtime Details

When evaluating our system, we use a sequential, single-threaded mode that
runs at around 14 FPS with an RTX 3080. For live demos and reconstructions,
we also develop a multiprocessing version that runs at 35-50 FPS as shown in the
FPS counter in the top right of the supplementary video, with tracking flexible to
be on either CPU or GPU. We show examples of reconstructions while operating
a monocular camera in real-time. Fig. 1b displays a large-scale raw point cloud
of an office, while Fig. 8 displays consistent TSDF fusion of a desk sequence.

Average times for tracking a frame, adding a keyframe (KF), and updating
the map are 20.1, 50.4, and 39.8 ms. Keyframing is the bottleneck during fast
motion, but 35-50 FPS in multiprocessing mode for normal motion is standard as
shown in the video. For comparison, we measure the wall time of several methods.
For the TUM fr3/long sequence of 1m27s, DeepFactors requires 6m52s, COMO
single-thread 3m04s, DROID-VO 1m45s, and COMO multiprocessing 1m35s. We
also believe further optimization is possible since almost all code is implemented
in PyTorch and could be further customized in CUDA.

6 Conclusion

In this work, we present a compact representation of 3D anchor points and
frame-based depth covariance functions to achieve efficient estimation of consis-
tent poses and geometry in real-time. Future work includes training the depth
covariance function on more diverse data and replacing photometric constraints
with learned correspondence from DROID-VO to achieve the best of its learned
correspondence with our representation. Lastly, we believe the compact point
representation could be used in a full map-centric SLAM system with relocaliza-
tion, which would allow continually improving geometry upon revisiting. With
the advance of learned priors, exploiting geometric correlation is an interesting
direction to achieve efficient, robust, and consistent algorithms.
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A Analytical Jacobians

One of the main benefits of formulating compact-to-dense geometry in the man-
ner presented is the capability to efficiently calculate analytical Jacobians, which
is key to the second-order optimization. Here, we demonstrate the chain rule re-
quired, with each Jacobian being straightforward nonlinear functions that are
common in SLAM, such as camera projection and point transformation, linear
matrix multiplication from the GP, and element-wise operations, such as expo-
nentiation and logarithm for converting between log-depth and depth.

A.1 Compact-to-Dense Geometry

Note that the GP conditional in Equation 3 means that each dense point n for a
given image is dependent on all m anchor points visible to that image. We show
the chain rule for a single dense geometry point n with respect to one visible
anchor point m viewed in the keyframe
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but note that this can be calculated efficiently by broadcasting and using the
full KNM (KMM)

−1 matrix. Similarly, we can calculate the Jacobian of a dense
geometry point with respect to the keyframe pose it is generated by. However,
note that there are two dependencies on the keyframe pose TWCr : one for trans-
forming an anchor point into the camera frame, and the other for transforming
a dense geometry point in the camera into the world frame so that other poses
may use it in the photometric error calculation. Therefore, denoting the minimal
6 DoF parameterization of se(3) with TWC, and with an abuse of notation of a
pose transforming a point as PW = TWCPC, the Jacobian becomes:
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One important design decision was whether to parameterize anchor points as
3D points in the world frame, or depths hosted in a reference camera frame. While
the latter was used in DSO [10] to reduce the dimensionality of the unknown
geometry variables, it would complicate our case. Using depth hosted in a camera
frame includes both the target pose and the reference pose itself in the cost
function, and Hessian blocks must now include the reference pose. In our case,
since dense depth maps involve many anchor points, all reference poses associated
with corresponding anchor points for a given keyframe would have dependencies.
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This would significantly complicate Jacobian calculations, since potentially all
poses would be involved in each error computation, rather than just reference
keyframe poses and the targets for photometric error. By keeping the anchor
points as world points and projecting, we avoid any host frame dependencies
and maintain more efficient and less complex Jacobians. Furthermore, we also
show in Section A.4 how to exploit our formulation to reduce the dimensionality
of dense Hessian block accumulation.

A.2 Photometric Residuals

Image gradients are calculated via finite differences with a 3x3 Scharr filter and
bilinearly interpolated along with the grayscale image values.

The Jacobians of the target image value with respect to an anchor point, the
reference keyframe pose, and the target image pose are:
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A.3 Additional Constraints

For the two depth priors, we require the Jacobian of the log-depth of each anchor
point projection with respect to the anchor point and keyframe pose, which is
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The pixel prior requires the Jacobian of the pixel projection of the anchor points
with repsect to the anchor point and keyframe pose
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which requires the camera projection Jacobian.
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A.4 Geometry Hessian Block Trick

One of the most expensive steps in the mapping backend is accumulating the
Hessian geometry blocks for the photometric error. For example, with the 64
points per-frame, this is requires a sum of 192x192 matrices over the number of
pixels involved in the error. One interesting component of the geometry Jacobian
is the the last term, which has a very simple form:

∂Pm
Cr

∂Pm
W

= RT
WCr

. (21)

Note that for all anchor points in a given keyframe, this Jacobian is identical, as
it is just the rotation from world to keyframe coordinates. Since this is the outer
term when accumulating the Hessian, we may factor it out of the sum over all
pixels. Furthermore, the Jacobian for the depth term is also very simple, since
it just indexes the z-component of the anchor point in the camera frame:

∂zm

∂Pm
Cr

= [0, 0, 1]. (22)

We can also factor this out of the sum, which most importantly, reduces the
dimensionality of the Hessian sum to be 64x64 instead of the original 192x192,
which greatly improves efficiency by decreasing the memory needed as part of the
reduction by 9x. Furthermore, this reduces pose-geometry blocks from 8x192 to
8x64, which is a 3x reduction. Note that we include each frame’s affine brightness
parameters in the pose block so it is of dimension 8 instead of 6.

B ScanNet Sequences

We list the ScanNet test sequences used in Table 5. We selected these sequences
due to the diversity of environments and the fact that they are similar in length.
Some sequences are longer or only rotational motion, which causes all methods
to have much larger ATE, at which point it is difficult to tell whether global
trajectory measures are useful for evaluating odometry.

C Baseline Details

To set up DROID-VO from the DROID-SLAM code, we disable the post-process
at the end of the sequence that performs global bundle adjustment. More specif-
ically, terminate function call that first performs two sets of bundle adjustment
on all keyframes, and then also the PoseTrajectoryFiller that performs motion-
only bundle adjustment on not only keyframes, but all frames. We use the public
code for evaluating on TUM, as we found that removing the code that uses every
other frame to cause significant errors on fr1/desk2, which skews the overall er-
ror. Since DROID-SLAM does not have public code for Replica and ScanNet, we
tried different configurations. For Replica, we found that a resolution of 512x320



4 E. Dexheimer and A.J. Davison

Sequence Environment
709 Kitchen
710 Home office
715 Reception
716 Laundry
719 Dorm
722 Dorm
733 Living room
741 Bedroom
760 Office
780 Laundry
787 Storage
788 Gym
790 Copy room
792 Stairs
794 Outside tables
800 Bookstore
803 Supply room
804 Copy room

Table 5: ScanNet test sequences used for evaluation.

to perform better than 320x240, and is closer to the original aspect ratio of the
images. For ScanNet, we found that the images are similar in resolution to TUM,
so we use 320x240. For ScanNet, we must apply a crop of 10 pixels on all sides
to handle undistorted regions with invalid values that remain visible.

For DeepFactors, we found that global loop closure could cause large errors, so
we disabled it. As mentioned in the paper, we use all three recommended factors:
photometric, reprojection, and geometric. For Replica, which has a different
aspect ratio than TUM and ScanNet, we attempted both cropping and resizing
the full image, with the latter giving better overall accuracy. Since DSO assumes
undistorted images, we preprocessed TUM and ScanNet by first undistorting and
then cropping any invalid pixels on the edges. For our method with and without
correspondence, we use a 256x192 resolution for all datasets as this resolution is
the same as used by the depth covariance UNet.

We compare all methods with only keyframes in the trajectory error, so we
extract the up-to date keyframe estimates for evaluation. For comparing dense
depth maps on ScanNet, we performed the same cropping with 10 pixel borders
and resizing to a 4:3 ratio for all methods. This ensures that all predicted depth
maps could be registered to the ground-truth depth maps.

D Depth Map Comparison

Since DROID-VO largely treats per-pixel depths independently, this can skew
commonly used depth error metrics such as RMSE. For this reason, we omitted
these results from the main paper, but include them here. We show accuracy
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and consistency metrics for Replica in Table 6 and Table 7, respectively. For
ScanNet, we show the results in Tables 8 and 9. Bold indicates the best for
a given metric, while underline indicates second-best. Note that for the error
metrics (RMSE, MAE, and AbsRel) lower is better, while higher fractions for
δ is better. COMO achieves the most accurate depths while also being first or
second across all consistency metrics.

RMSE (↓) MAE (↓) AbsRel (↓) δ = 1.02 δ = 1.05 δ = 1.10 δ = 1.25 δ = 1.252 δ = 1.253

DeepFactors [7] 0.707 0.567 0.263 0.052 0.126 0.245 0.531 0.794 0.871
DROID-VO [35] 305.131 2.534 1.129 0.368 0.706 0.887 0.964 0.985 0.993
COMO-NC 0.256 0.160 0.069 0.228 0.513 0.773 0.963 0.992 0.998
COMO 0.191 0.111 0.046 0.371 0.716 0.895 0.976 0.994 0.998

Table 6: Depth accuracy evaluation on Replica.

RMSE (↓) MAE (↓) AbsRel (↓) δ = 1.02 δ = 1.05 δ = 1.10 δ = 1.25 δ = 1.252 δ = 1.253

DeepFactors [7] 0.097 0.057 0.029 0.500 0.845 0.968 0.997 0.999 0.999
DROID-VO [35] 258.511 1.689 0.248 0.729 0.901 0.953 0.976 0.982 0.985
COMO-NC 0.181 0.098 0.040 0.455 0.760 0.912 0.984 0.997 0.999
COMO 0.119 0.060 0.025 0.630 0.879 0.962 0.993 0.998 0.999

Table 7: Depth consistency evaluation on Replica.

RMSE (↓) MAE (↓) AbsRel (↓) δ = 1.02 δ = 1.05 δ = 1.10 δ = 1.25 δ = 1.252 δ = 1.253

TANDEM [17] 0.923 0.655 0.325 0.084 0.193 0.343 0.562 0.729 0.793
DeepFactors [7] 0.684 0.499 0.232 0.053 0.128 0.243 0.519 0.842 0.959
DROID-VO [35] 481.428 3.138 1.389 0.114 0.264 0.454 0.766 0.928 0.964
COMO-NC 0.464 0.332 0.155 0.086 0.210 0.381 0.741 0.955 0.990
COMO 0.416 0.278 0.128 0.123 0.281 0.480 0.835 0.965 0.987

Table 8: Depth accuracy evaluation on ScanNet.
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RMSE (↓) MAE (↓) AbsRel (↓) δ = 1.02 δ = 1.05 δ = 1.10 δ = 1.25 δ = 1.252 δ = 1.253

TANDEM [17] 0.366 0.150 0.160 0.395 0.632 0.778 0.891 0.938 0.956
DeepFactors [7] 0.097 0.051 0.031 0.503 0.831 0.958 0.996 0.998 0.998
DROID-VO [35] 244.693 1.140 0.258 0.474 0.736 0.869 0.947 0.969 0.975
COMO-NC 0.201 0.106 0.056 0.363 0.654 0.842 0.965 0.993 0.997
COMO 0.114 0.051 0.028 0.612 0.867 0.955 0.991 0.997 0.998

Table 9: Depth consistency evaluation on ScanNet.
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